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Abstract

We study the approximation of a continuous function field over a compatbset continuous field
of ridge approximants ovdr, named ridge function fields. We first give general density results about
function fields and show how they apply to ridge function fields. We next discuss the parameterization
of sets of ridge function fields and give additional density results for a class of continuous ridge function
fields that admits a weak parameterization. Finally, we discuss the construction of the elements in that
class.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this work, we study the problem of approximating a continuous function field over
a compact set by a continuous field of approximants overBy a function field over a
compact set is meant a map defined dnand valued in a function space. L@&tX, R) be
the space of continuous real-valued functions<gm subset oR?, and letM be a subset
of C(X, R). We shall study the approximation of a map— C(X, R) by a mapT — M,
with special emphasis on the case whaitds a set of ridge function-based approximants.
A ridge function ovelR? is a function of the typé(ax), whereh : R — R, ais a point
of R?, andax is the usual inner product iR¢.
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Approximation by ridge function refers to approximation by linear combinations of
ridge functions, for some integar In the most general setting, the functiois allowed to
vary inC(R); i.e., we consider the sets

n

Ru(A) = {Zcihi(aix), cieR.a € ACR’ hi e CR.R) (1)
i=1

and
R(A) = U, R, (A) 2

of approximants, where the directioasbelong to some subsétof R<. If the functionh
is fixed, the above sets of approximants become

M, = {Zcih(a;x),c,- €eR,a € Rd} )
i1

and

A slight variation on the theme consists in approximating by linear combinations of shifted
ridge functions, i.e., functions of the foriax + b), wherea € R?, and whereé € R is
the shift. Note thalk and.M are not linear spaces.

This kind of approximation has been studied by several authors, and density results, as
well as bounds on the approximation rate, have been obtained. In Lin and Ririjus
necessary and sufficient conditions on thefsate given forR(A) to be dense i€ (R?),
in the topology of uniform convergence on compact sets (see also the paper by Vostrecov
and Kreineg17]). An asymptotic expression of the approximation rate has been obtained
by Maiorov[12]. Approximation by elements of the s&tf arose from the field of neural
networks, whereM has been shown to be denseifR?) if the functionh is of sigmoidal
form, i.e., if lim_y A(z) = O and lim,« k() = 1[7,8], and Barron2] obtained the
dimension-independant upper boufith ~1/2) on the approximation rate. Additional results
may be found ir{6,13,14,15].

The particular form of approximation studied here is motivated by a physical problem
coming from the field of geosciences, i.e., ocean sciences, atmosphere sciences, and earth
sciences, for which the above-approximation methods do not match all of the physical
requirements. This problem is known as the ocean color problem. It consists in estimating
the concentrations of several oceanic constituents, such as phytoplankton, from & vector
of radiometric measurements acquired by a sensor aboard a satellite. Thus, if one wishes
to estimate the phytoplankton concentration frona real-valued function of is sought.

In fact, those radiometric measurements depend continuously on a veatangular
variables that are used to characterize the positions of the sun and of the satellite, relative
to the observed point of the Earth’ surface. Hence, the ocean color problem may be seen as
a collection of similar problems continuously indexedtbin this context, a solution may

be expressed as a function field oWethe set of allowable values for
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It is the purpose of this paper to give a grounding to this methodology by stating results
related to its efficiency, i.e., density results. In Section 2, general density results about
functionfields overa compact set are given and applied to fields of ridge approximants, called
ridge function fields for shorteness. Next, in Section 3, we discuss the parameterization of
sets of continuous ridge function fields, which is necessary for their construction. Additional
density results for a class of continuous ridge function fields are obtained, leading to the
main results of Propositions 10 and 11. We conclude the paper with a brief exposition of
the perspectives of this work.

2. Density results

Let us start by recalling some facts related to the compact-open topologi heta
locally compact Hausdorff space, andYdie a Hausdorff space. In the followingX will
stand for the set afontinuoudunctions fromXto'Y.

The compact-open topology o is generated by the sef$K, U) = {f € YX|f(K) C
U}, whereK is a compact subset of, and wherédJ is an open subset &f. Furthermore, if
X is a compact Hausdorff space, and is metric, then the compact-open topologyoh
is induced by the metric of uniform convergence,

dist(f, g) = sup{dist f(x), g(x))|x € X}.

Hence, ifX is locally compact and Hausdorff, then the compact-open topologyois
the topology of uniform convergence on compact sets.

There are also the following important two theorems, a proof of which may be found in
[3], for example.

Theorem 1. Let X be a locally compact Hausdorff spaesd let Y and T be Hausdorff

spaces. Lef : X x T — Y be afunctionand let f; be the functions defined for each t by
fi(x) = f(x,1). Then f being continuougs equivalent to both of the following conditions
holding

(i) eachy; is continuousand

(ii) the functionT > ¢ — f, € YX carrying tto f; is continuous.

Theorem 2. Let X and T be locally compact Hausdorff spacasi let Y be a Hausdorff
space. Then there is the homeomorphism

yX<T =, (YX>T.

Hence, by Theorem 1, for a functigh — Y to be continuous, it suffices that the
associated functiol x T — Y is continuous. Theorem 2 is also known aseRponential
law.

Now letX be a locally compact Hausdorff space, andétbe the set of continuous real-
valued functions orX. Let T be a compact Hausdorff space. We introduce the following
notation. Given a functiory : T — RX, define the functionf, : X x T — R by

Jelx 1) = f(O)(x).
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Theorem 3. Let X be a locally compact Hausdorff spatest, T be a compact metric Haus-
dorff spaceand let M be a dense subset BY. Then the set” is dense ir(RX)T.

Proof. By the exponential law theorem, it suffices to show that theSsaft continuous
functions of the form

XxT>x, 1) fulx,1):=f@)(x) €R
is dense iR**T, wheref € M.
Lete > 0, and letf € (RX)T. Let
B:(t) = {g € M :sup|fi(x,1) — g(x)| <& VK C X compact.

xekK

Sincef is continuous,

Ve' > 0,Vip € T,A(e) > 0: |t — 10| < 5 => sup| fulx,1) — filx,10)] <&,
K

forall K ¢ X compact.
Let g, € By (r). We have that

Sll(lplgz(X) — flx,10)] < Sll(JIOIgz(X) — [, 0l + Sll(Jplf*(x, 1) — fi(x, 10)]

<2¢.

HenceB, (1)NByy (1) # ¥, which implies thaB3,, (1) N By (o) # ¥, SINCeBy (1) C Boy (1).
Henceve > 0,Vig € T, 3y > 0: dist(z, 10) < n => By () N By (t0) # .

Consequently, for alt > 0, there exists a continuous map: 7 — M such thatvz €
T, f(t) € B.(t). Finally, sinceT is compact, we have that spsup, |f*(x, 1) — fu(x, )| <
g, forall compactk ¢ X. O

Corollary 4. LetG be a fundamental set iR¥; i.e., sparg is dense irR¥. Then the set
of continuous map% — spang is dense ir(RX)T.

We now move on to the definition of a ridge function field. Tdie a compact Hausdorff
metric space. We definerage function fieldoverT as being a continuous mdp— M,
where M is the set of ridge function approximants defined by Eq. (4). It is assumed here,
and in the sequel of the paper, that the generator funttionEq. (4) is such that\ is
dense irC(R%). For instancel may be of sigmoidal form. Under this assumption, we have,
as a corollary of Theorem 3, the following proposition.

Proposition 5. Let T and M be as above. Then the §gt — M} of continuous ridge
function fields over T is dense (RX)T.

The set of continuous ridge function fields oWewill be denoted byM” .

Remark. In the case wher@1 in Theorem 3, or spag in Corollary 4, is a linear space,
one immediately obtains a characterization\df . For instance, consider the case where
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spang is the set of polynomials in several variables. Thleti may be identified with the
tensor produc€ (T) ® G, providing one with a practical way of constructing a continuous
field of polynomials ovefl. Things go differently wherM is not a linear space, as will be
discussed in the next section.

3. Parameterization of ridge function fields

Let { € MT be a ridge function field. SincE is compact, we may assume, without
loss of generality, that belongs toM!, for some integen, where M, is the set of
linear combinations of at mostshifted ridge functions. We are willing to characterize the
elements ofM! for the purpose of defining a simple and practical construction method of
ridge function fields. Let us start with some definitions and general points.

Let A be a topological space. We call a $ea parameter spactor A if P is homeomor-
phic to A, and the homeomorphisiy : P — A will be referred to as parameterization
for A. We call a seP aweak-parameter spader A if there exists a continuous surjection
i, : P — A, andi, will be referred to as aveak-parameterizatiofor .A. Note that if. A
admits a weak-parameterization: P — A, then it admits a parameterization if and only
if the mapi, is open. In fact, if, is open, thend is homeomorphic t@®/ ~, the quotient
space with the quotient topology, being the quotierPafiven by the equivalence relation

p1~ p2iff iy(p1) =ip(p2). (%)

The setM,, of ridge approximants admits a weak parameterization. More precisely, each
element ofM,, depends on parametetsa;, b;, fori = 1, ..., n, which we shall summarize
by a vector),,.. Let ©, be the set of allowable values féf, i.e.,0, = [[/_; R x RY x R,
and leti, : ©®, — M, be the continuous map sending a parameter vegiao the
corresponding ridge approximantdi,,. The map, is a continuous surjection, i.e., aweak-
parameterization faM,,. Hence, a ridge approximant @fl,, is constructed by specifying
an element of the weak-parameter spége

We ask if the set ! of continuous ridge function fields ov&radmits a weak parameter-
ization. In fact, we are to be faced with the following difficulties. For each continuous ridge
function field{ € M7, there exists at least one vector-valued functian — @, such
that{ = i,, o &. Note that a discontinuous functign 7 — @,, may yield a continuous ridge
function field{ = i, o &, sincei, is only surjective. Therefore, there exists an appropriate
subset of the set of eventually discontinuous functibns @,,, which is a weak-parameter
space forM!'; the difficulty here resides in its characterization. An alternative approach,
to ensuring the continuity dfis to proceed conversely, by constructifigia a continuous
parametermap : T — @,;i.e.,{ =i, o . By doing so, the field is continuous, but we
are not sure to get all OM,{ whené varies inC(T); i.e., it is not sure that the sét,{ of
continuous map% — @, is a weak-parameter space fot! .

In fact, the above difficulties come from the fact that very little is known about the
quotient spac&®,/ ~, though the equivalence relation @), has been pointed out and
studied by several authors, mainly in the context of neural networks. The casehigtre
hyperbolic tangent has been studiedly16], and extended if®,10] to the case whereis
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asymptotically bounded. In fact, the major concern of those works has been to reduce the
set of allowable values for the parameter veéipto improve the optimization procedure
involved in function approximation from a finite data set. There is also the closely related
work of Buhmann and Pinkus, which is to be found4rb].

We do not pursue this direction here. Instead, we ask if one may obtain a dense set of
ridge function fields, built via continuous parameter maps?T — @,,. More precisely,
we ask if

Un{CGM,{ZCZinOé,ée@,{} (6)

is dense inC(X))”, where we recall tha@,{ denotes the set of continuous médps> O,,.
The answer is yes, and we begin by stating the following proposition.

Proposition 6. Let T be a compact metric Hausdorff spaaed letG be a fundamental set
in C(X). Then the set

Un {f €CX X T): f,1) =) fih)gi(X); fi € C(X); i € Q} (7

i=1
isdenseirC(X x T).

Lemma 7. Let X and T be two locally compact Hausdorff spaces] let A be the set
spanned by functions of the forfiix)g(t), wheref € C(X), and whereg € C(T). Then A
isdenseirC(X x T).

Proof. Clearly,Ais a subalgebra af(X x 7') which separates points and vanishes at no
pointof X x T. Lethg be an element af(X x 7). To show thatd = C(X x T), it suffices
to show that for each compaktof X x T and eaclx > 0, the set

Bx:=1heC(X xT): sup |h(x,1) —ho(x,1)| <&
(x,neK
has a nonempty intersection with Let K3 and K, be compact subsets of, respectively,
XandT, such thatk C K1 x K. The sef{ fk1xk, : f € A} of restrictions of elements
of Ato K1 x Kz is still an algebra containing constants and vanishing at no point, and is
therefore dense iK1 x K2) by the Stone—Weierstrass theorem. Consequéititersects
Bk xk,.¢e- Noting thatBg, «x,,. C Bk, We have also thak intersectsBg .. U

Proof of Proposition 6.The set defined by Eq. (7) contains the set of functions of the form
F®) X", gi(x), which is easily seen to be denseioX x T') by Lemma 7. O

Corollary 8. Let G be fundamental ir€(X), and let T be a compact metric Hausdorff
space. Then the set of function fieldsT — C(X) such that
n
L) =) e (0)gi(X), ®)
i=1

for some integer n;; € C(T), andg; € G, is dense inC(X))”.
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Proof. By Theorem 2, there is the homeomorphi€aX x T) N cxnr. O

Finally, we arrive at the following two propositions. Recall that the generator funhtion
is such that\ is dense irC(R?).

Proposition 9. The set of ridge function fields: T — M such that

LG =) i (Oh@X+by), 9

i=1

for some integer rg; € C(T), & € R?, andb; € R, is dense inC(X))”.

Proof. TakeG = {h : R? 3 x — h(ax+b) € R;ae R%;b € R}, i.e., M = spang, and
apply Corollary 8. [

Proposition 10. The set of ridge function fields: T — M such that

LGt =) a®h @)X +bi1), (10)

i=1

for some integer n;; € C(T), a; € C(T, RY), andb; € C(T), is dense inC(X))”.

Proof. The set of ridge function fields satisfying (9) is included in the set of ridge function
fields satisfying (10). O

In the above propositiorh; andc; vary in all of C(T'), anda; varies in all ofC(T, R?).
Now given subset§, c C(T,R%), F, c C(T), andF. C C(T), we consider the set of
ridge function fields satisfying (10), whetg e F., a; € Fa, andb; € F. In the following
proposition, sufficient conditions dfa, F5, andF, are given for such a set of ridge function
fields to be dense itC(X))T.

Proposition 11. LetF, and.F, be subsets @l(T), and letF, be a subset af(7, RY). Let
R (Fe, Fa, Fp) be the set of ridge function fields T — M such that

LGt =) a®h @ tx+bi1), (12)

i=1

for some integer ng; € F., & € Fa, andb; € Fp. For R (F., Fa, Fp) t0o be dense in
c(xnT,itis sufficient thatF,. and.F, contain the constant functiorsnd that#, contains
the affine functions.

Proof. Let A be the set of approximants of the ridge form o¥ex T'; i.e., A is spanned
by functions of the form

fx,t) = Zcih (a-iX‘i‘éit-i-[;i), (12)
=1
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wherec;, b; € R, a; € R?, andd; € RIMT) et
R*(fcrfa9]:b)={g* :CGR(FL'r]:a9]:b)}' (13)

The density ofR (F,, Fa, F3) in (C(X))T comes from the inclusiod C Ry (Fe, Fa, Fp),

from the density ofd in C(X x T), and from the homeomorphis@(X x T) = cxnr.
O

Of particular interest is the ridge function field of the special kind described below.
AssumeT is a compact subset &”. Let {t1, ...tyr} be k? points of R?, being thek?
vertices of a regular grid d®”, such thaf is included in the smallegt-dimensional cube
Z containing all of the;. HenceT C Z, andt; € Zforalli =1, ..., kP.

Let y4, ..., yx» bek? real numbers. Let be a continuous and piecewise differentiable
function onZ such thatf (t;) = y; foralli =1, ..., k7, and defined for all € = such that
t £ t;Vi by

2r
fO =)0t f ). (14)

j=1

In this equation, the; . are the 2 immediate neighbours dfon the grid—i.e., they are
the vertices of thg-cube such that belongs to its interior and the coefficients(t) are
the coefficients of the standapddimensional interpolation procedure on the interior of
a p-cube. We shall denote h¥; the set of all such maps. Note tha, c Fr.1. The
construction of these maps is illustrated in Fig. 1, in the case whete.

° ° ° ° °
t,, LY,
® 1 Yig : > ® ®
A A
it ()
E T
A, A
—
¢ A % ¢ ¢

Fig. 1. Construction of a real-valued piecewise differentiable figpmultilinear interpolation. In this picturd,
is a two-dimensional ellipsoidal domain covered by a regubar3sgrid. The valuef (t) of f at some point in the
square with corners locatedtat ..., t4 is defined by

4
A.
FO= 2 Gt Az i

where theA;’s are the areas of the rectangles defined on the picture. Note thaf thepend ort.
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Let R(Fy) be the set of ridge function fields: T — M such that,, is of the form

LoD =Y amh (3Ox+bio), (15)

i=1

where?d;, b;, ¢ are restrictions ta of functionsa;, b;, ¢; defined onZ, and such that
bi, c;, and the components, j = 1, ..., d of a; belong toF;. As abovex € X C RY,
a; € C(T,RY), b; € C(T), andc; € C(T).

From a practical point of view, the seR(F;) are especially interesting, since their ele-
ments may be constructed in a rather simple way. Furthermore, by Proposition 11, the sets
R(Fy) are dense inC(X))”, for all k > 1, which illustrates the significance of the above
results.

4. Concluding remarks

So far we have given density results on sets of ridge function fields. It would be interesting
to pursue this work by investigating the rate of approximation of some class of function
fields, by ridge function fields. One might expect an interplay between the numtifer
ridge functions and the complexity of the parameter map. For instance, in the above field,
constructed on a regular grid, it would be interesting to examine the dependence of the
approximation rate on, and on the number of points in the grid. Another research direction
that would be worth exploring is the geometry and topology of sets of ridge function-
based approximants. We have seen that this is the major source of problems in getting a
parameterization, or weak parameterization, of sets of continuous ridge function fields.
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