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Abstract

We study the approximation of a continuous function field over a compact setTby a continuous field
of ridge approximants overT, named ridge function fields. We first give general density results about
function fields and show how they apply to ridge function fields. We next discuss the parameterization
of sets of ridge function fields and give additional density results for a class of continuous ridge function
fields that admits a weak parameterization. Finally, we discuss the construction of the elements in that
class.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this work, we study the problem of approximating a continuous function field over
a compact setT by a continuous field of approximants overT. By a function field over a
compact setT is meant a map defined onT and valued in a function space. LetC(X,R) be
the space of continuous real-valued functions onX, a subset ofRd , and letM be a subset
of C(X,R). We shall study the approximation of a mapT → C(X,R) by a mapT → M,
with special emphasis on the case whereM is a set of ridge function-based approximants.

A ridge function overRd is a function of the typeh(ax), whereh : R → R, a is a point
of Rd , andax is the usual inner product inRd .
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Approximation by ridge function refers to approximation by linear combinations ofn
ridge functions, for some integern. In the most general setting, the functionh is allowed to
vary inC(R); i.e., we consider the sets

Rn(A) =
{

n∑
i=1

cihi(aix), ci ∈ R, ai ∈ A ⊂ Rd , hi ∈ C(R,R)

}
(1)

and

R(A) = ∪nRn(A) (2)

of approximants, where the directionsai belong to some subsetA of Rd . If the functionh
is fixed, the above sets of approximants become

Mn =
{

n∑
i=1

cih(aix), ci ∈ R, ai ∈ Rd

}
(3)

and

M = ∪nMn. (4)

A slight variation on the theme consists in approximating by linear combinations of shifted
ridge functions, i.e., functions of the formh(ax+ b), wherea ∈ Rd , and whereb ∈ R is
the shift. Note thatR andM are not linear spaces.

This kind of approximation has been studied by several authors, and density results, as
well as bounds on the approximation rate, have been obtained. In Lin and Pinkus[11],
necessary and sufficient conditions on the setA are given forR(A) to be dense inC(Rd),
in the topology of uniform convergence on compact sets (see also the paper by Vostrecov
and Kreines[17]). An asymptotic expression of the approximation rate has been obtained
by Maiorov [12]. Approximation by elements of the setM arose from the field of neural
networks, whereM has been shown to be dense inC(Rd) if the functionh is of sigmoidal
form, i.e., if lim−∞ h(t) = 0 and lim+∞ h(t) = 1 [7,8], and Barron[2] obtained the
dimension-independant upper boundO(n−1/2)on the approximation rate.Additional results
may be found in[6,13,14,15].

The particular form of approximation studied here is motivated by a physical problem
coming from the field of geosciences, i.e., ocean sciences, atmosphere sciences, and earth
sciences, for which the above-approximation methods do not match all of the physical
requirements. This problem is known as the ocean color problem. It consists in estimating
the concentrations of several oceanic constituents, such as phytoplankton, from a vectorx
of radiometric measurements acquired by a sensor aboard a satellite. Thus, if one wishes
to estimate the phytoplankton concentration fromx, a real-valued function ofx is sought.
In fact, those radiometric measurements depend continuously on a vectort of angular
variables that are used to characterize the positions of the sun and of the satellite, relative
to the observed point of the Earth’ surface. Hence, the ocean color problem may be seen as
a collection of similar problems continuously indexed byt . In this context, a solution may
be expressed as a function field overT, the set of allowable values fort .
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It is the purpose of this paper to give a grounding to this methodology by stating results
related to its efficiency, i.e., density results. In Section 2, general density results about
function fields over a compact set are given and applied to fields of ridge approximants, called
ridge function fields for shorteness. Next, in Section 3, we discuss the parameterization of
sets of continuous ridge function fields, which is necessary for their construction.Additional
density results for a class of continuous ridge function fields are obtained, leading to the
main results of Propositions 10 and 11. We conclude the paper with a brief exposition of
the perspectives of this work.

2. Density results

Let us start by recalling some facts related to the compact-open topology. LetX be a
locally compact Hausdorff space, and letYbe a Hausdorff space. In the following,YX will
stand for the set ofcontinuousfunctions fromX toY.

The compact-open topology onYX is generated by the setsS(K, U) = {f ∈ YX|f (K) ⊂
U}, whereK is a compact subset ofX, and whereU is an open subset ofY. Furthermore, if
X is a compact Hausdorff space, and ifY is metric, then the compact-open topology onYX

is induced by the metric of uniform convergence,

dist(f, g) = sup{dist(f (x), g(x))|x ∈ X}.
Hence, ifX is locally compact and Hausdorff, then the compact-open topology onYX is
the topology of uniform convergence on compact sets.

There are also the following important two theorems, a proof of which may be found in
[3], for example.

Theorem 1. Let X be a locally compact Hausdorff space,and let Y and T be Hausdorff
spaces. Letf : X × T → Y be a function,and letft be the functions defined for each t by
ft (x) = f (x, t). Then f being continuous,is equivalent to both of the following conditions
holding
(i) eachft is continuous;and
(ii) the functionT � t �→ ft ∈ YX carrying t toft is continuous.

Theorem 2. Let X and T be locally compact Hausdorff spaces,and let Y be a Hausdorff
space. Then there is the homeomorphism

YX×T ≈−→
(
YX

)T

.

Hence, by Theorem 1, for a functionT → YX to be continuous, it suffices that the
associated functionX ×T → Y is continuous. Theorem 2 is also known as theexponential
law.

Now letXbe a locally compact Hausdorff space, and letRX be the set of continuous real-
valued functions onX. LetT be a compact Hausdorff space. We introduce the following
notation. Given a functionf : T → RX, define the functionf∗ : X × T → R by
f∗(x, t) = f (t)(x).
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Theorem 3. Let X be a locally compact Hausdorff space,let T be a compact metric Haus-

dorff space,and letM be a dense subset ofRX. Then the setMT is dense in
(
RX

)T
.

Proof. By the exponential law theorem, it suffices to show that the setS of continuous
functions of the form

X × T � (x, t) �→ f∗(x, t) := f (t)(x) ∈ R

is dense inRX×T , wheref ∈ MT .
Let � > 0, and letf ∈ (

RX
)T

. Let

B�(t) = {g ∈ M : sup
x∈K

|f∗(x, t) − g(x)| < �; ∀K ⊂ X compact}.

Sincef is continuous,

∀�′ > 0, ∀t0 ∈ T , ∃�(�′) > 0 : |t − t0| < � => sup
K

|f∗(x, t) − f∗(x, t0)| < �′,

for all K ⊂ X compact.
Let gt ∈ B�′(t). We have that

sup
K

|gt (x) − f (x, t0)| < sup
K

|gt (x) − f∗(x, t)| + sup
K

|f∗(x, t) − f∗(x, t0)|
< 2�′.

HenceB�′(t)∩B2�′(t) �= ∅, which implies thatB2�′(t)∩B2�′(t0) �= ∅, sinceB�′(t) ⊂ B2�′(t).
Hence∀�′ > 0, ∀t0 ∈ T , ∃� > 0 : dist(t, t0) < � => B�′(t) ∩ B�′(t0) �= ∅.

Consequently, for all� > 0, there exists a continuous map̂f : T → M such that∀t ∈
T , f̂ (t) ∈ B�(t). Finally, sinceT is compact, we have that supT supK |f̂∗(x, t)−f∗(x, t)| <

�, for all compactK ⊂ X. �

Corollary 4. LetG be a fundamental set inRX; i.e., spanG is dense inRX. Then the set

of continuous mapsT → spanG is dense in
(
RX

)T
.

We now move on to the definition of a ridge function field. LetTbe a compact Hausdorff
metric space. We define aridge function fieldoverT as being a continuous mapT → M,
whereM is the set of ridge function approximants defined by Eq. (4). It is assumed here,
and in the sequel of the paper, that the generator functionh in Eq. (4) is such thatM is
dense inC(Rd). For instance,hmay be of sigmoidal form. Under this assumption, we have,
as a corollary of Theorem 3, the following proposition.

Proposition 5. Let T andM be as above. Then the set{T → M} of continuous ridge
function fields over T is dense in

(
RX

)T
.

The set of continuous ridge function fields overTwill be denoted byMT .

Remark. In the case whereM in Theorem 3, or spanG in Corollary 4, is a linear space,
one immediately obtains a characterization ofMT . For instance, consider the case where
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spanG is the set of polynomials in several variables. ThenMT may be identified with the
tensor productC(T ) ⊗ G, providing one with a practical way of constructing a continuous
field of polynomials overT. Things go differently whenM is not a linear space, as will be
discussed in the next section.

3. Parameterization of ridge function fields

Let � ∈ MT be a ridge function field. SinceT is compact, we may assume, without
loss of generality, that� belongs toMT

n , for some integern, whereMn is the set of
linear combinations of at mostn shifted ridge functions. We are willing to characterize the
elements ofMT

n for the purpose of defining a simple and practical construction method of
ridge function fields. Let us start with some definitions and general points.

LetA be a topological space. We call a setP aparameter spacefor A if P is homeomor-
phic toA, and the homeomorphismip : P → A will be referred to as aparameterization
for A. We call a setP aweak-parameter spacefor A if there exists a continuous surjection
ip : P → A, andip will be referred to as aweak-parameterizationfor A. Note that ifA
admits a weak-parameterizationip : P → A, then it admits a parameterization if and only
if the mapip is open. In fact, ifip is open, thenA is homeomorphic toP/ ∼, the quotient
space with the quotient topology, being the quotient ofP given by the equivalence relation

p1 ∼ p2 iff ip(p1) = ip(p2). (5)

The setMn of ridge approximants admits a weak parameterization. More precisely, each
element ofMn depends on parametersci, ai , bi , for i = 1, ..., n, which we shall summarize
by a vector�n. Let�n be the set of allowable values for�n, i.e.,�n = ∏n

i=1R×Rd ×R,
and let in : �n → Mn be the continuous map sending a parameter vector�n to the
corresponding ridge approximant ofMn. The mapin is a continuous surjection, i.e., a weak-
parameterization forMn. Hence, a ridge approximant ofMn is constructed by specifying
an element of the weak-parameter space�n.

We ask if the setMT
n of continuous ridge function fields overTadmits a weak parameter-

ization. In fact, we are to be faced with the following difficulties. For each continuous ridge
function field� ∈ MT

n , there exists at least one vector-valued function� : T → �n such
that� = in◦�. Note that a discontinuous function� : T → �n may yield a continuous ridge
function field� = in ◦ �, sincein is only surjective. Therefore, there exists an appropriate
subset of the set of eventually discontinuous functionsT → �n, which is a weak-parameter
space forMT

n ; the difficulty here resides in its characterization. An alternative approach,
to ensuring the continuity of� is to proceed conversely, by constructing� via a continuous
parameter map� : T → �n; i.e.,� = in ◦ �. By doing so, the field� is continuous, but we
are not sure to get all ofMT

n when� varies inC(T ); i.e., it is not sure that the set�T
n of

continuous mapsT → �n is a weak-parameter space forMT
n .

In fact, the above difficulties come from the fact that very little is known about the
quotient space�n/ ∼, though the equivalence relation on�n has been pointed out and
studied by several authors, mainly in the context of neural networks. The case whereh is the
hyperbolic tangent has been studied in[1,16], and extended in[9,10] to the case whereh is
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asymptotically bounded. In fact, the major concern of those works has been to reduce the
set of allowable values for the parameter vector�n to improve the optimization procedure
involved in function approximation from a finite data set. There is also the closely related
work of Buhmann and Pinkus, which is to be found in[4,5].

We do not pursue this direction here. Instead, we ask if one may obtain a dense set of
ridge function fields, built via continuous parameter maps� : T → �n. More precisely,
we ask if

∪n {� ∈ MT
n : � = in ◦ �, � ∈ �T

n } (6)

is dense in(C(X))T , where we recall that�T
n denotes the set of continuous mapsT → �n.

The answer is yes, and we begin by stating the following proposition.

Proposition 6. Let T be a compact metric Hausdorff space,and letG be a fundamental set
in C(X). Then the set

∪n

{
f ∈ C(X × T ) : f (x, t) =

n∑
i=1

fi(t)gi(x); fi ∈ C(X); gi ∈ G
}

(7)

is dense inC(X × T ).

Lemma 7. Let X and T be two locally compact Hausdorff spaces,and let A be the set
spanned by functions of the formf (x)g(t),wheref ∈ C(X), and whereg ∈ C(T ). Then A
is dense inC(X × T ).

Proof. Clearly,A is a subalgebra ofC(X × T ) which separates points and vanishes at no
point ofX × T . Leth0 be an element ofC(X × T ). To show thatA = C(X × T ), it suffices
to show that for each compactK of X × T and each� > 0, the set

BK,� =
{

h ∈ C(X × T ) : sup
(x,t)∈K

|h(x, t) − h0(x, t)| < �

}

has a nonempty intersection withA. Let K1 andK2 be compact subsets of, respectively,
X andT, such thatK ⊂ K1 × K2. The set{fK1×K2 : f ∈ A} of restrictions of elements
of A to K1 × K2 is still an algebra containing constants and vanishing at no point, and is
therefore dense inC(K1×K2) by the Stone–Weierstrass theorem. ConsequentlyA intersects
BK1×K2,�. Noting thatBK1×K2,� ⊂ BK,�, we have also thatA intersectsBK,�. �

Proof of Proposition 6.The set defined by Eq. (7) contains the set of functions of the form
f (t)

∑n
i=1 gi(x), which is easily seen to be dense inC(X × T ) by Lemma 7. �

Corollary 8. Let G be fundamental inC(X), and let T be a compact metric Hausdorff
space. Then the set of function fields� : T → C(X) such that

�∗(x, t) =
n∑

i=1

ci(t)gi(x), (8)

for some integer n,ci ∈ C(T ), andgi ∈ G, is dense in(C(X))T .
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Proof. By Theorem 2, there is the homeomorphismC(X × T )
≈−→ (C(X))T . �

Finally, we arrive at the following two propositions. Recall that the generator functionh
is such thatM is dense inC(Rd).

Proposition 9. The set of ridge function fields� : T → M such that

�∗(x, t) =
n∑

i=1

ci(t)h(aix + bi), (9)

for some integer n,ci ∈ C(T ), ai ∈ Rd , andbi ∈ R, is dense in(C(X))T .

Proof. TakeG = {h̃ : Rd � x �→ h(ax+ b) ∈ R; a ∈ Rd; b ∈ R}, i.e.,M = spanG, and
apply Corollary 8. �

Proposition 10. The set of ridge function fields� : T → M such that

�∗(x, t) =
n∑

i=1

ci(t)h (ai (t)x + bi(t)) , (10)

for some integer n,ci ∈ C(T ), ai ∈ C(T ,Rd ), andbi ∈ C(T ), is dense in(C(X))T .

Proof. The set of ridge function fields satisfying (9) is included in the set of ridge function
fields satisfying (10). �

In the above proposition,bi andci vary in all of C(T ), andai varies in all ofC(T ,Rd).
Now given subsetsFa ⊂ C(T ,Rd), Fb ⊂ C(T ), andFc ⊂ C(T ), we consider the set of
ridge function fields satisfying (10), whereci ∈ Fc, ai ∈ Fa, andbi ∈ Fb. In the following
proposition, sufficient conditions onFa,Fb, andFc are given for such a set of ridge function
fields to be dense in(C(X))T .

Proposition 11. LetFc andFb be subsets ofC(T ), and letFa be a subset ofC(T ,Rd). Let
R (Fc, Fa, Fb) be the set of ridge function fields� : T → M such that

�∗(x, t) =
n∑

i=1

ci(t)h (ai (t)x + bi(t)) , (11)

for some integer n,ci ∈ Fc, ai ∈ Fa, and bi ∈ Fb. For R (Fc, Fa, Fb) to be dense in
(C(X))T , it is sufficient thatFc andFa contain the constant functions,and thatFb contains
the affine functions.

Proof. Let A be the set of approximants of the ridge form overX × T ; i.e.,A is spanned
by functions of the form

f (x, t) =
n∑

i=1

cih
(
aix + ãi t + b̃i

)
, (12)
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whereci, b̃i ∈ R, ai ∈ Rd , andãi ∈ Rdim(T ). Let

R∗(Fc, Fa, Fb) = {�∗ : � ∈ R(Fc, Fa, Fb)}. (13)

The density ofR (Fc, Fa, Fb) in (C(X))T comes from the inclusionA ⊂ R∗ (Fc, Fa, Fb),

from the density ofA in C(X × T ), and from the homeomorphismC(X × T )
≈→ (C(X))T .

�

Of particular interest is the ridge function field of the special kind described below.
AssumeT is a compact subset ofRp. Let {t1, ...tkp } be kp points ofRp, being thekp

vertices of a regular grid ofRp, such thatT is included in the smallestp-dimensional cube
� containing all of theti . HenceT ⊂ �, andti ∈ � for all i = 1, ..., kp.

Let �1, ..., �kp be kp real numbers. Letf be a continuous and piecewise differentiable
function on� such thatf (ti ) = �i for all i = 1, ..., kp, and defined for allt ∈ � such that
t �= ti∀i by

f (t) =
2p∑

j=1

	j (t)f (tij ). (14)

In this equation, thetij are the 2p immediate neighbours oft on the grid—i.e., they are
the vertices of thep-cube such thatt belongs to its interior and the coefficients	j (t) are
the coefficients of the standardp-dimensional interpolation procedure on the interior of
a p-cube. We shall denote byFk the set of all such maps. Note thatFk ⊂ Fk+1. The
construction of these maps is illustrated in Fig. 1, in the case wherep = 2.

γ1

γ2 γ3

t1,

t2, t3,

γ4t4,

A4 A1

A3 A2

t, g(t)
T

Fig. 1. Construction of a real-valued piecewise differentiable mapf by multilinear interpolation. In this picture,T
is a two-dimensional ellipsoidal domain covered by a regular 5× 3 grid. The valuef (t) of f at some pointt in the
square with corners located att1, ..., t4 is defined by

f (t) =
4∑

i=1

Ai
A1+A2+A3+A4

�i ,

where theAi ’s are the areas of the rectangles defined on the picture. Note that theAi depend ont.
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Let R(Fk) be the set of ridge function fields� : T → M such that�∗ is of the form

�∗(x, t) =
n∑

i=1

c̃i (t)h
(
ãi (t)x + b̃i (t)

)
, (15)

whereãi , b̃i , c̃i are restrictions toT of functionsai , bi , ci defined on�, and such that
bi , ci , and the componentsaj

i , j = 1, ..., d of ai belong toFk. As above,x ∈ X ⊂ Rd ,
ai ∈ C(T ,Rd), bi ∈ C(T ), andci ∈ C(T ).

From a practical point of view, the setsR(Fk) are especially interesting, since their ele-
ments may be constructed in a rather simple way. Furthermore, by Proposition 11, the sets
R(Fk) are dense in(C(X))T , for all k ≥ 1, which illustrates the significance of the above
results.

4. Concluding remarks

So far we have given density results on sets of ridge function fields. It would be interesting
to pursue this work by investigating the rate of approximation of some class of function
fields, by ridge function fields. One might expect an interplay between the numbern of
ridge functions and the complexity of the parameter map. For instance, in the above field,
constructed on a regular grid, it would be interesting to examine the dependence of the
approximation rate onn, and on the number of points in the grid. Another research direction
that would be worth exploring is the geometry and topology of sets of ridge function-
based approximants. We have seen that this is the major source of problems in getting a
parameterization, or weak parameterization, of sets of continuous ridge function fields.
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